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1. Introduction

The development of high degree spherical harmonic fields has been carried
out for a number of years. The estimation of such fields has become more
viable du- to the availability of satellite altimeter data in the ocean areas, and

the increased availability of terrestrial gravity measurements. One of the first
solutions to degree 180 was that of Rapp (1978). In 1981 Rapp carried out a
second expansion to degree 180 using a more complete set of a priori potential
coefficients than used in the 1978 solution. Other solutions have been
developed by Ler-h et al (1981, GEM10C) and Wenzel (1985, GPM2).

In the past few years our studies have been related to improved modeling
techniques takin; into account approximations made earlier (Rapp,, 1984; Cruz,
1995) and in the improvement of our 1 xl mean anomalies in land and ocean
areas (Rapp, 19P6a). The progress in these areas has led us to the
development )f new high degree expansions that take advantage of the new
theory mnd new data. This report describes the data, methods, arid analysis
used in the development of the new solutions.

2. Data to be I led

We fir-;t r(';4 ribo ,.'3ch of the possible sources of data for use in the new

-.- 9

2.1 l'xl" T,.!rr:-f trinI Gravity Dita

W-, h:v '- completed an update of our 1 xl mean free air anomaly
* ."" data s,.' , ' ak .m 'o, 19q6). This data set has evolved from prior compilations

and from a Trr wfr with data made available from DMA Aerospace Center. The
' new dt.a et contains 48,955 1 xl" anomalies (Figure 1) and 5689 anomalies

estirm:t,' %v ;,-ophysical correlation techniques. The location of most of the
g-oph:,;ical anomalies is shown in Figure 5. This new data set has corrected

. a nurnh-r of ,-r,)rs found in the set used for the OSU81 solution and has

incor 'r,0 nirlber of new date sources. The new data has led to better
FITI( Oiiv .st ,'2 ' for much of Europe, all of Australia, parts of Greenland,
S .o I t frTr . T rd . Japan, Brazil, and other areas.

2.2 Altimtrr Derived 1 x1 J" Gravity Anomalies

A rorMbjrjd ,e -/eat altimeter data set has been used to derive
gravity anomahife ,,n a 0.125 grid in the ocean areas. This gridded data has

been u,-,! t- 1 aii 20'-20' and lPxl" mean free air anomalies (Rapp, 1986a).
Approximatev :27,0T villies were estimated although some values were on land

- and som, , were riot reliable because of the sparsity of altimeter data in
the ara. The l c ton of all anomalies is shown in Figure 2. In later use we

" will ! .... 1:,; dnt, set anomalies on land and values with large standard
"-" (nV Ia r)--.
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2. Use a terrestrial anomaly in ocean areas only if its standard deviation is

A 5 rgals or if no altimeter derived anomaly exists.

3. Do not use altimeter derived anomalies south of latitude -65*.

4. For accepted terrestrial data apply the following corrections:
A. Due to Mass of Atmosphere (see equation (3.43))
B. To Reduce Surface Anomaly to the Ellipsoid (see equation (3.30))
C. For Gravity Formula Change

5. Reduce altimeter derived anomalies to the ellipsoid from the geoid using a
gradient technique (see (3.30)).

6. Do not use altimeter derived anomalies in the Mediterranean area defined
as (30' • + A 50'; 0* A X A 40*).

7. Create two data sets where one excludes geophysical anomalies and the
other includes such anomalies. Preliminary tests indicated that 33 geophysical
anomalies were very reasonable values and they were therefore included in
the first data file. The location of these anomalies and the rational for their
selection will be discussed later. We wil. be making two main combination
solutions; one will be designated OSU86C and it will exclude geophysical
anomalies (except for the select 33 values); the other will include the
geophysical anomalies and will be designated OSU86D.

The location of the 50,562 lPxl" anomalies used for the OSU86C solution is
shown in Figure 3 while Figure 4 shows the location of the 56,109 values used
in the OSU86D solution. Figure 5 shows the location of 5,547 V'xl" anomalies
used in OSU86D but not in OSU86C. Figure 6 shows the location of the 32,274

. anomalies derived from the altimeter data that are used in both the C and D
**.'" solutions.

In order to form a global field, values have to be estimated for blocks in
which ro anomaly estimate is available. Setting such values to zero is
inconsistenL with knowledge of the gravity field that we do have from the a
priori potential coefficient estimates. We therefore calculated a rigorous
anomaly on the ellipsoid using the potential coefficients described in Section
2.3.

The end product of this merger is two sets of 64,800 lxl" anomalies that
refer to an ellipsoid whose parameters were defined earlier and such that
there is no atmosphere outside the ellipsoid. Each anomaly has been assigned
a standard deviation which comes from the original estimation process. In the
case of the anomaly "fill ins" we assigned a standard deviation of ±25 mgal.
It is our intention to assume that all the anomaly estimates are independent.
This is not the case and problems caused by our assumption will be discussed
later.

We give in Table I information on the two l'xl" anomaly fields to be used
in our combination solution.

5
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As normal figure of the earth a geocentric, rotating, equipotential
ellipsoid, the gravity field of which can be defined by four parameters, is
formally used. The parameters can be the equatorial radius a, the flattening
f, the enclosed mass M which is equal to the earth's mass, and the rotational
velocity ci which is equal to the earth's rotational speed. The normal gravity
potential generated by thip ellipsoid can be expressed in terms of even-degree
zonal harmonics as:

U(r, *, A) D2nOP2 .(sin+)] + i 2r2 cos 2 (3.5)

where

D 2n ,o fully nor,alized normal potential coefficients

Pan fully normalized Legendre polynomials of degree 2n.

The Djo are related to the conventional Ji coefficients as follows:
-j

ID1,o =  (3.6)

1'21 + 1(36

In practice the Ji are negligible for I > 6. From Cook (1959) we can compute:

2 [f- (I f) _ m(l _- f + II1 f2J (3.7)

J2=3 2 24

-4 fJ. = c. -~ -f[f~ f 5m(1 - fj1  (3.8)

J6= f (6f - 5m) (3.9)

with

M = -dL (3. 10)

The disturbing potential is defined as:

T = W - U (3.11)

Using (3.2) and (3.5) this becomes:

T(r, -, X) = !1* X (3.12)
r t= =O d= r)

where the fully normalized disturbing potential coefficients Cjd are the same
as the Aid except in the case of the even degree zonals for which the D1,o
are subtracted from the Ag,o. In the usual notation:

C d rc ( 0
S Si,, O 1 (3.13)

N 11
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[g I1 laa2 + e 4r 11sin 2i a2 [1 e'sn2 T
T= - _ + + 24r

3sin 22* T (3.17)M N 7 4b'M N r 4b' ar

where

M meridional radius of curvature of the ellipsoid

N pr vertical radius of curvature of the ellipsoid

b polar radius of the ellipsoid

Retaining only terms of O(e 2 ) the boundary conditions (3.16) and (3.17)
become (Cruz, 1986, (2.7), (3.10)):

aT aT e2
Ag aT _2 T - e -sin-cos , + -(3sin2+ 2) r (3.18)

Agm -T -- T + e 2 (3sin 2
+ - 2) T (3.19)ar r r

If terms of O(e 2 ) are further neglected the boundary condition transforms to
the usual spherical form:

Ago go T 2Ag0  
- 8r 2-T (3.20)ar r

where the superscript "o" denotes the spherical approximation gravity
anomaly.

3.3 The Gravity Anomaly in Terms of Potential Coefficients

In our further discussions we concentrate on the use of the gravity
anomaly Ag defined in (3.14) and the boundary condition (3.18), as opposed to
the Agp of (3.15) and (3.19).

We first wish to express the gravity anomaly Ag of (3.14) in terms of the

disturbing potential coefficients CIO occurring in (3.12). This is conceptually
done by substituting (3.12) into (3.18). The result is formulated in Cruz

4% (1986) in terms of ellipsoidal corrections:

Ag -ath OY - lt e Ct7)Y n(i, X) (3.21)r 2 mO 0d, I

where the CS., (i = h, y) are ellipsoidal corrections of O(e2 ) computed from
the CIZ themselves as follows:

C1. e2 (P~jCt-2 + +jCI ra,,aC*i) h,

with

13

r /.

?..."

- . ."-



kMAgo = k (I-1)dCt Yo1 (, ') (3.28)
a 12 mflO d=O

with inverse

I. = -g °  Y n ( , X) da (3.29':'a- ( ,-Il) a,

We still need to relate the AgO needed in (3.29) to the gravity anomaly that is
more directly available in practice, namely, the gravity anomaly Ag5 thatfollows the definition (3.14) and refers to the topographic surface of the
earth.

.-4,. .

To relate Ag 5 and Ag ° Cruz (1985) has suggested that Ag. be downward
continued to the ellipsoid as a first step. To do this we utilize a Taylor
series expansion:~,

1 h a2Ag h

Ag" = Ag- ar 2 ar2 (3.30)

where h is the height of the point (or mean elevation of a block) above the
ellipsoid. In writing (3.30) we recognize the concern with analytical
continuation and the problem of computing the gradient expressions. Although
local gradients can be computed from detailed data, we need gradients for the
reduction of mean anomalies on a global basis. The most efficient way to do
this is to differentiate the anomaly expression (3.21) assuming potential
coefficients are known. Neglecting the small effects of CjI

'
h and CtjY in

these reductions we have:

YAM k X) (3.3P
Jr r 3  =o2 o r

a+ g k £.. (i-1)(i+2)(,1+3) -i CI'm ' ('  3)33m r~ag = r-kM moc=
Jr 2  r4 1.2 rnO =O r om

The root mean square value of the first derivative reduction in (3.30) is t10
mgal (max = 19 mgals) and for the second derivative reduction it is t0.01 mgal
(max = 1.0 rngal) (Rapp, 1984). These computations were carried out with the
Rapp (1981) potential coefficient field to degree 180. From recent calculations
using I'xl* mean gradient computation and an unpublished expansion to
degree 300, the RMS value of the first derivative effect is '0.8 mgal (max = 30
mgals) and for the second derivative it is t0.04 mgal (max = 2.1 mgals). In
practice we compute the gradient correction terms and store them for
application to various sets of surface gravity anomalies.

Knowing the gravity anomaly AgE on the ellipsoid we can express the

spherical approximation gravity anomaly Ag ° on the equatorial sphere as (Cruz,
e.'.-.1986, (4.8)):

Ag g + A ,h t l + 2 + 73 ... '3.33

15
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and

'a.C,, -e + di3()1lLi2 m~~i ,
cS.' 8(-) (*-1-2) (1)K ,waC' j

with
Kim

+ (J-3)(t)( t+l)L J- 2 MU ten t- 2 ,

L!m + ( -1 °+2m)
;.0d, 0

+ (+l)(t+4)(t+5)Na+,, vj 2,n

-(" (+3)(t+6)( +7)PI+4,mXrnCl~l..
~with

Kim dt122r+2M1

Ll t mBm  
+ 

Pt+2,M)

Mim -)mT,+2,M 
+  

(lim 
+  
d,-2,"y,. 3.40

i Nim Y "M,(16-2,., + PIt.)

• PIM 71T-2,MYIM

(2t 1) (21+3)

ft 2t2-2m2 +21-1) 34
/ " (21+3)(21-1)7

Ytm (2t+I) (2J-1)

'fi w /~~ (21t-7) (i+mo-3)(l+u---2 ) (+-+ l{1)i-.-m)
= " -- rn(2+1) (A-m-3)(A-m-2)(A-n-1)(A--m) -

::',,P 3-12':

7i (21+9) (t-n+l) (t-m+2) (*-M+3) (1-m-,4)
X~m(2+1)(~m+)(++2)(++3)(4m+4)

- This completes the discussion on how to express the disturbing potential
coefficients Cjd in terms of the surface gravity anomaly. The two steps
involved are (3.30) followed by an implementation of (3.34) via (3.35) or (3.361.
the formula for the Cj, in terms of Cid' ° is given in Cruz (1986, (6.20)).

3.5 Physical Realization of the Gravity Anomaly

A final point should be made concerning the physical realization of the
theoretical gravity anomaly defined in (3.14). Rapp (1984) discusses the

,I..
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The mathematical model is written as

F = F(Lia, Lxa) = 0 .4.1)

which is linearized to yield the observation equation:

BIVA + B.Vx + W = 0 (4.2)

where

B F aL B. F (4.3)

If we designate Pj and P. as the weight matrices for the observations and
parameters respectively, the weighted least squares condition for the solution
is:

VITpjVj + VjP.V. = a minimum (4.4)

The solution for V. is:

V= -(BIK-IB. + PK)BTK-IW 4.5)

where

M BPIBIT '4.6"

The observation residuals are:

V, = --PirBTM-'(BxV. + W) (4.7)

The error variance--covariance matrix for the solution vector is:

EX = m2(BTf-hBx + p.)-, ,4.8)

where me is the variance of unit weight.

The mathematical structure is formed by assuming that the potential
coefficient estimate from satellite derived procedures should be the same as
that obtained from the global gravity data set after appropriate corrections
(e.g. ellipticity and downward continuations) have been made. We write:

F = L=a - La = 0 4.9 ,

If L~o is the approximate potential coefficient set and Lxc ° is the coefficient
set based on the observed (and corrected) anomalies, the misclosure vector is:

W = Lxo - Lc (4.10)

The LKc values are computed from (see eq. 3.34)
0

CiJ4 Yj(*, X) dd (4.11'

19
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The corresponding adjusted potential coefficients, considering the ellipsoidal
corrections, would be:

Ctm,. = Lxa t 6Ct '° + C*V' 2  4.21

The adjusted anomalies would be found from:

Lta = LI* + VI (4.22'

The corresponding surface anomalies would be found from (4.13)

&g,. =g Lia -6gA + ±M h + L 2! gh21.3

-"ar 2!ar 2

This completes the discussion of the adjustment model to be used in this

combination solution. It is similar to the procedure used in the computation of
~the OSU78 combination solution except now we reduce surface anomalies to the

ellipsoid and apply ellipsoidal corrections.

The normal equation matrix of the solution is given by BIPJIBI T . The size
of the matrix is dependent on the number of a priori defined potential
coefficients. For a solution complete to degree 20 the number of coefficients
is 441. In the 1978 solutions we were able to complete a solution to I = 12.
In our 1981 solution we wanted to go to a much higher degree with more
coefficients. This could not be done because of computer limitations so we

•> ,made certain assumptions that led to the normal equation matrix being
diagonal. The result was an approximate combination solution that was carried
out with small computer demands.

For the solution to be described in this report we have 64800 l'xl"
"observations" and 582 unknowns. The estimated computer time for a solution
on the IBM 4031D at OSU was 4.5 hours. As several solutions were
contemplated the OSU computer requirements were still considered excessive.
At this point we started tests on a CRAY XMP2/4 supercomputer at Boeing
Computer Services. Funding for this computer work was from National Science
Foundation Grant EAR-8420862. Modification of our existing combination
program by one of us (JC) took advantage of the vectorization ability of the
CRAY machine. With this change, a combination solution took 6.5 minutes.
This meant that a number of different solutions could be carried out to learn
what the best solutions could be.

5. The Estimation of the High Degtree Potential Coefficients

The adjustment described in the previous section yields a set of adjusted
potential coefficients (see eq 4.20) and a set of adjusted anomalies on the
ellipsoid (see eq. 4.22). These anomalies can then be used to estimate Cgc,'
using the following (see eq. 3.34)

Cl kM 4 f Age Yjt(*, A) da (5.1)

21
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where N = 180*/0*. The evaluation of (5.2) using pre-computed associated
Legendre function integrals, and a Fourier analysis of the mean anomalies
along latitude bands, and with the qI values defined in (5.5) is carried out
through the HARMIN subroutine in Colombo (ibid) as implemented in OSU (RHR)
library program F419. This procedure is one of the ways in which the high
degree expansions have been computed from the adjusted anomalies.

5.2 Potential Coefficients Through Optimal Estimation

A disadvantage of the procedure in the previous section is that it does
not take into account data noise nor does it provide error estimates of the
estimated coefficients. To consider this factors we have used the optimal
estimation procedure developed by Colombo (1981) and implemented for l'xl
data by Hajela (1984). We discuss only the general principles of this least
squares collocation solution to (5.1). We start with the global mean gravity
anomaly vector, U, expressed as the sum of a signal vector, z, and a noise
vector, n:

Agz + n (5.6)

Let the potential coefficient vector (Ci , ] be defined as c. Let F be a
linear operator that will estimate c (i.e. a) from Ag:

c F(z + n) (5.7$

The error in this estimation is e:

e c - - c - F(z + n) (c - Fz) - (Fn) 5. 8

We define the sampling error as e, and the propagated noise error to be e,.
We have:

e e., c - Fz e., - Fn 5.9

A The error covariance matrix of 6 is:

F, = Fs * E, Mfe, eT  M{e,, 11 5.10:

where M is an averaging operator. Substituting (5.9) into $5.10) we find:

ET C -2CczFT + F(C,, + D)FT 5.11

where

C M{cc'}, Cr M(c z1 }
5.12'

Cz , M{z, z}, D M{n nT}

C represents the covariance matrix of the potential coefficients; C,, is the
cross covariance between the potential coefficients and the given mean

4223
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The error variance of the potential coefficients is the same for C' and C2 .
It is given by:

_____ Ax 2  if M 0
"cam =SIm ,2(1-1)7 21+1 1-cosmAN

2  if M 0

N-1• L 2N Eokt'm xf (5.18)

j=0 I
where cl are the anomaly degree variances implied by an a priori potential
coefficient model.

The calculation of the covariance functions and the potential coefficient
errors of the optimum estimation solution requires the definition of cl.
Adopted here was a model used by Colombo (ibid) which consists of the
anomaly degree variances implied by the OSU78 solution from degree 2 to 100
and beyond 100 by a two component anomaly degree variance model described
by Rapp (1979). Specifically this model (with the cl values interpreted to be
at a sphere of radius R (= 6371 kin) is:

where 11 1(I12+ 2- S)+ gl

Ol = :3.4050, d2 140.03
sl = 0.998006 s 2 = 0.914232
A = 1, B= 2

--j For actual implementation we require the cl values on a sphere of radius
- ' a so we used:

cl-, el(a) = cl(R)[21 (5.20'

A plot of this function will be given in a later section dealing with results.

Our intention in this study will be to implement both the HARMIN type
solution and the optimal estimation solution. Various solutions will be made
and the results compared.

6. Preliminary Investigations

Before we discuss our final solutions it is appropriate to describe a set of
studies that led to the procedures used in the final solution. These studies
were carried out with preliminary sets of global gravity models and a priori
potential coefficient sets.

25
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B. Cumulatively:

6N I6 %'--S- 16N ml[ x6N, 2 , .'

,5. . (2) The root mean square anomaly difference by degree and for the whole

coefficient set:

A. By degree

6g, 2 [ 1( l) 2 A AC Id 6.3;
:."0 -O--:-. ~ ~ ~ ~ f-- d=0[ z , ] .'

B. Cumulatively:

6g ,:x6g,2J 6.4;

(3) The percentage difference by degree and cumulatively:

A. By degree:

-.j:o ------- 100 6.5Pt : it 0 : f 0

M=O 0(=O

B. Average Percentage Difference

4.Nm.x

I P.0
", .P = 2 G. K;

The values of 6N and of 6g represent the global mean difference of the
two potential coefficient functions over the sphere. The values of 6Nt and
6gj represent the same information by degree. The percentage difference
provides information that takes into account the relative magnitude of the

% coefficient differences to the coefficient magnitudes.

Another quantity that can be used for the comparisons of two coefficient
sets is the degree correlation coefficients (pt) and the overall correlation
coefficient p. The degree correlation between the coefficient sets i and j
would be:

' ." £(cC.tj *St. st.)
M= .i I

-9..
--a=o m = Y, i.

0 
io j

The overall correlation would be:
N a-
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variances implied by a uniform uncorrelated error of t10 mgals in I*x]"
i .. blocks. From Rapp (1981), we have that the propagated standard deviation of

a fully normalized potential coefficient of degree I due to a uniform,
uncorrelated error of m(ag) in a block size of 8 (radians) can be approximated
as:

M(C, S) - m(g)e (6.9)

The 10 mgals used for m(Ag) in (6.9) is the root mean square (RMS) of the
8-15 mgal standard deviations used in the combination solution. The similarity
between columns (3) and (5) is evident.

To examine whether the assumption of 8-15 mgal uncorrelated errors was
reasonable we computed a set of potential coefficients from only the
unadjusted l*xl" anomalies. These values were then differenced from the
unadjusted GEML2' coefficients. The difference anomaly degree variances
were then computed and shown in Table 5, column (2). It is seen that the
data errors shown in columns (1) and (3) cannot account for the differences
shown in column (2). This implies that the 8-15 mgal uncorrelated noise
assumption is very optimistic.

.. We decided to examine the use of an RMS standard deviation of t25 mgals
for the l'xl" anomalies. The assumption of uniform uncorrelated errors leads
to error anomaly degree variances that are shown in Table 5, column (4).
These variances are now (25/10)2 = 6.25 times larger than those of the 110
mgal accuracy, and appear to be much more reasonable. The ±25 mgal RMS

-.'.' accuracy could be implemented in our combination solution by multiplying the
8-15 mgal accuracies by 2.5 then restricting the range to 20 6 m ' 38 mgals.
We then performed a combination solution denoted by CS(20, 38), yielding

error anomaly degree variances for the adjusted coefficients as shown in
Table 5, column (6). These values are now larger, with cumulative variance to
degree 20 of 1.88 mgal2 compared with 0.48 mgal 2 from column (5).

It is of interest to compare the coefficients of the CS(8, 15) and CS(20, 38)
solutions in terms of undulation and anomaly differences and percentage
differences. Using the equations of section 6.2 the difference between the two

solutions are shown in Table 6. As would be expected the greatest change
takes place at the lower degrees because it is here that the dual estimate of
the potential coefficients are obtained from the adjustment of satellite and
terrestrial data.

The CS(8, 15) and CS(20, 38) types of solution were also compared in
41." terms of orbit fits and fits to Doppler derived undulations. The orbit fit

results are shown in Table 7, with more specific details of orbit tests given in
Section 8.5. It is seen that the CS(20, 38) solution performs substantially
better than the CS(8, 15). This seems natural as the higher anomaly standard
deviations gives the a priori potential coefficients greater influence on the
solution.
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Table 8. Comparison of Doppler Derived Undulations with Preliminary
Geopotential Models Complete to Degree 180.

Mean Std Dev. Number of
Model Difference Difference Stations Area

CS(8,15) 0.32 m 21.64 m 1749 Global'

CS(20,38) 0.19 1.68 1738

CS(8, 15) 0.38 1.55 691 N. America1

CS(20, 38) 0.21 1.54 687

CS(8,15) -0.24 1.42 172 Europe2

CS(20, 38) -0.48 1.38 172

CS(8, 15)1 -1.13 1.60 114 Australia2

CS(20, 38) -1.06 1.69 114

stations with residuals greater than 4 meters in absolute value were

rejected

2 A fixed set of stations was used

The combination solution used an anomaly standard deviation range of
8 ' m - 15 mgals over the land of Australia only, with 20 & m A 38 mgals
used over the rest of the world.

difference standard deviation of ±1.60 m at 114 Australian Doppler stations
with our final solution to be discussed later, compared with 11.69 when the
CS(20, 38) solution was used.

The problems discussed in this section arise from the assumption of
uncorrelated noise. In fact the anomaly errors are correlated. Such
correlation and its role in the computation of anomaly degree variance
accuracies is discussed by Weber and Wenzel (1982). At this point we have no
way of treating anomaly error correlation in our solutions. Instead we have
increased our anomaly error estimates. Such a procedure is not desirable and
in fact gives unreasonably high errors at degrees above 30. To compensate
for this, our accuracy estimate for unadjusted coefficients will be based on
the ±10 mgal uncorrelated noise assumption.

6.4 Preliminary High Degree Expansions

We next studied the manner by which the high degree expansions from the
adjusted anomalies of the combination solution should be carried out. The
main comparisons to be discussed here relate to a HARMIN type solution (set-
equation 5.2) and the optimal estimation solution (see equation 5.15). The first
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implied by the OE(8, 15) and OEI test solutions as well as the a priori model
used in the optimal estimation procedure. The smoothing effect of the anomaly
noise is evident from this plot.

The optimal estimation procedure yielded error estimates for the computed
coefficients. For the OE(8, 15) solution these estimates were directly taken,
giving error anomaly degree variances as also plotted in Figure 7. For the
OE1 solution the error estimates from the optimal estimation mainly correspond
only to the sampling error, with a small contribution from the 1 mgal noise.
To complete these estimates we quadratically added the propagated error
implied by the assumption of ±10 mgal uniform, uncorrelated 1 xl" noise.
Specifically, we computed:

m(C, S) = /mZ(SE) + m 2 (PE) 16. 11

where m(SE) is the sampling error and m(PE) is the propagated error. The
m(PE) is given by (6.9). A similar, but not as rigorous procedure was used in
the development of the OSU81 field. The total error estimate for the CEl
solution gave error anomaly degree variances that are also shown in Figlre 7.

The error estimates for the OE(8, 15) solution are smaller than the total
error estimates of the OF] solution. This is consistent with the concept of
filtering the anomaly errors in the OE(8, 15) solution. However, this filtering
involved a smoothing of the spectrum which could substantially affect valid
information. In order to test the two solutions we compared then in terms of
their fits to Doppler derived undulations as shown in Table 10. The OF]
solution performed slightly better in these comparisons. At this point we
decided to use for our work the OEI type of solution, with a simple
propagation of the anomaly errors as shown in (6.11),

Since the optimal estimation solution is a complicated process it is of
interest to compare the results of HARMIN with OEI. These comparisons are
shown in Table II. The conclusion from Table 11 is that HARMIN gives
coefficients that agree well with the coefficients found from the optimal
estimation. The disadvantage of the HARMIN solution is that no error
estimates are provided. Such values are found when the optimal solution is
carried out.
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Table 10. Comparison of OE(8, 15) and OEl in Terms of Fits to Doppler
Derived Undulations. Maximum Degree is 180.

Mean Std Bey. Number of
Model Difference Difference Stationst Ar(,i

0E(8,15) 0.22 m t1.68 m 1731 Global
OEI 0.1!9 1.68 1738

OF(H, 15) 0.25 1.56 683 N. America

OE 0.21 1.54 687

t Stations with residuals greater than 4 meters in absolute value were

rejected

Table 1I. Comparison of Potential Coefficient Solutions From HARMIN ;Ird from
Optimal Estimation (1 mgal standard error).

I 6N (cm) 6g (mgals) P(%)

2 0.0 0.00 0.0

10 0.0 0.00 0.0
20 0.0 0.00 0.0
30 0.2 0.01 0.5

50 0.2 0.02 1.1

75 0.8 0.09 6.2

100 1.0 0.15 10.6
120 1.0 0.18 13.2
150 0.6 O.11 13.0
180 0.8 0.22 22.3

to 180 8.9 1.53 7.6

6.5 A Study of the Undulation Residual Correlation with Elevation

Tacherning (1985, private communication) pointed out that the differ-Ift,s

in the Doppler and gravity model undulations were correlated with elevation
for the OSU81 solution but not for the GPM2 field. In our research we have
computed this correlation for several models for various Doppler dat:i sets by
assuming there was a linear correlation with elevation. To do) this the
available Doppler stations were grouped into 100-meter elevation intotvals.
The undulation residuals AN lling within an interval were then averagfed

get AN. The mean value AN was assumed to refer to i he mean elevation H of
the stations involved. A simple least squares fit was then rarried ,wit to
compute the slope s and bias b in the observation equation:
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Table 12. Undulation Residual Correlation with Elevation Using the Global
Station Set. Maximum Degree is 180.

Slope Std. Dev. Number of
Solution (m/km) (m/km) Stat tonst

OSU81 0.73 20.16 1721

GPM2 0.00 0.10 1735

CS(20, 38, OE1) 0.39 0.13 1738

GPM2(n = 7 to 14)
+ CS(20, 38, OFI) 0.02 0.13 1734

CS(8, 15, OE1) 9.42 0.13 1749

t stations with residuals greater than 4 meters in absolut- v:lut ,.

rejected

The slopes of our new solutions are less thun in ,) W'£ fl.1 m/kin
compared to -0.7 m/kin), although they may still be con.;id-r-rl sign'ficIrn..
Further tests are needed to better understand thet ippar,,' si;., pr , :;,nd
its implications.

Table 12. (.'ndulation Residual Correlation with 1],\' t in sing th( 2,h II
Station Set. Maximum Degree is 30.

Slope Std. IDev. Nunirtr ()f
Solution m.km' m km ,t t (n).t

OSTIRI 0 93 20.18

GPM2 0.24 0,17

GEMI2 0 57 0.21 W 1)

RIM3,L 0.79 0.19 1L)?

CS(20, 38, OFI j 0.74 O.17 17:21

t Stations with residuals greater than 5 meters in absolute vilue wetr
reject ed.
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In addition we found, again through Doppler undulation comparisons, some
geophysical anomalies to be quite realistic in the sense that they yield
improved undulation values at selected sites. Because of this we selected (see
Section 6.6) 33 geophysical anomalies to be included in the data set for which
almost all geophysical anomalies were excluded. The formation of this global
data set was discussed in Section 2.4.

Tests with these fields indicated that our Doppler undulation comparisons
in Australia were not as good as found in other areas, primarily North America
and Europe. In order to obtain a better Doppler fit in the Australia region
we gave the terrestrial anomaly data higher weight by specifying in this
region the anomaly standard deviation range to be 8 to 15 mgals instead of
the 20 to 38 mgal used everywhere else (see Section 6.3). In addition we
changed five anomalies from one data source to another source on the basis of
individual Doppler undulation comparisons. This led to undulation differences
decreasing from ±1.69 m to 11.60 m. More details of undulation comparisons
are given in Section 8.

With the above as background we carried out the two main solutions of

this report, OSU86C and OSU86n. The C solution essentially excludes
geophysical anomalies while the D solution includes them. The combination
solutions were performed on a CRAY XMP 2/4 machine using the procedures
outlined in our previous sections. The ellipsoidal corrections were applied to
the adjusted coefficients (see eq. 4.21) to obtain our final "adjusted"
('efficients. The adjusted anomalies were developed into potential coefficients
using the optimal estimation procedure with a uniform anomaly noise of t1
mgal and the a priori anomaly degree variance model defined by equations 5.19
and 5.20. Th, expansion was carried out to degree 250 which involves the
determination of 63,001 coefficients. The coefficients were merged with the
adjusted coefficients (see remark below eq. 5.1), ellipsoidal corrections
computed from the merger (eqs. 3.37 and 3.39), and these corrections applied
(eq. 3.36) to +tiin the final high degree coefficient set. Although the
adjustfd c,,efficients and the coefficients computed from the adjusted
anomalies should be the same, we gave preference to the directly adjusted
potential ,-(ffioients because such coefficients carried a standard deviation

det-rmined through the adjustment.

The standard de-viations for the potential coefficients not estimated in the

adjustment were obtained considering the sampling error (SE), found from the

optimal estimation solution (see eq. 5.18) and a propagated error (PE) implied
by the assumption of 110 mgal uncorrelated noise for the I xl anomalies.
This error is computed from:

M(PF Ag0 (7.1)

where P is the block size (W in radians) and m(Ag) is the anomaly standard
deviation in units of ,. The coefficient error, for either C or S was then:

MC, S) m2rn S m2 PE) (7.2)
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8. Comparison of Results

The purpose of this section is to compare the new models between
themselves and with two other high degree models. The models are the OSU81
(Rapp, 1981) and the GPM2 (Wenzel, 1985) model. The comparisons, carried out
in several different ways are described in the following section.

8.1 Anomaly and Undulation Comparison

The global differences between the various solutions are shown in Table
15 for undulations and Table 16 for anomalies. The differences are given for
the maximum degrees of 30 and 180.

Table 15. Potential Coefficient Differences in Terms of Geoid Undulations
(meters)

OSU86D OSU86C GPM2

OSU Dec81

to f = 30 1.04 t 1.32 ± 1.12

to 1 = 180 1.20 1.51 1.31

GPM2
to t 30 ± 1.08 1.21
to 1 180 1.25 1.43

OS U86C
to 1 30 t 0.56
to 1 180 0.73

Table 16. Potential Coefficient Differences in Terms of Gravity Anomalies
.1,:'. (mgals)

OSU86D OSU86C GPM2

OSl! Dec'81

to 1 30 * 2.5 1 3.0 t 2.6

to 1 180 7.3 8.9 8.4

GPM2
to * 30 t 2.6 3.0
to 1 7 180 8.5 9.9

OSU86
to t = 30 * 1.5
to 1 z 180 4.9
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8.3 Doppler Undulation Comparisons

We next turn to a comparison of the geoid undulations derived fromr fhe
various geopotential models with undulations derived from Doppler derived
positions. If h is the ellipsoidal height of a station derived through loppler
satellite positioning techniques, after conversion to a geocentric system
properly scated (Rapp, 1983), the "Doppler undulation" is:

N, - h, - HI8.

where H is the orthometric height of the point. We compute N from Brir's
equation where the disturbing potential is given by equation (3.12) with r the

N geocentric distance to the point in question projected to the ellipsoid. In all
our comparisons we used the parameters to convert the Doppler system to a
geocentric system with correct scale derived by Boucher and Altaiimi (1985).
The translation and scale parameters to go from the Doppler system to a
geocentric system were used as follows:

AX z - 10. 6 cm

Ay - 69.7 cm

Az c 490.1 cm

As 7 - 0.604 ppm

The comparisons made were with two primary sets of Doppler stitions.
One contained approximately 800 stations and was received from Tscherning.
This set was originally obtained from the National Geodetic Survey and
contains stations only in North America. The second set contained
approximately 2000 stations distributed globally. The coordinates wer,
determined in the years from 1971 to 1985. The number of passes could rarIg
from a minimum of 25 to a maximum of 592. In our analysis we made ri
correction for sun spot effects as suggested by Tscherning and Goad (1985,.
The overall effect of neglecting this for our large data sets is expected to be
only a few cm. In making our comparison we assumed the geoid undulations
referred to an ellipsoid with equatorial radius of 6378136 m and a flatt(.ning of
1/298.257. Comparisons for the Tscherning data set are given in Table 19.
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. *8.4 Undulation Residual Correlation with Elevation

Tscherning (1985, private communication) pointed out that the differences
in the Doppler and gravity model undulations were correlated with elevation
for the OSU8I solution but not for the GPM2 field. In our research we have
computed this correlation for several models for various Doppler data sets by
assuming there was a linear correlation with elevation. Results for the global
data set and the stations in Europe are shown in Table 23 and 24.

Table 23. Undulation Residual Correlation Using the Global Station Set

Slope Std Dev. No. of
Solution (./km) (./km) Stations

OS(I81 0.73 2 0.16 1721
G1142 0.00 0.10 1735
OSU86C 0.41 0.12 1741
OS[J86D 0.43 0.12 1743

"able 24. Undulation Residual Correlation Using the European Station Set

Slope Std Dev. No. of
Solution m/km) (m/km) Stations

OSU8l 1.53 1 0.81 172
GPM2 1.87 0.63 172
OSU86C 0.92 0.65 172
OSU86D 1.14 0.69 172

From these results we see that the GPM2 model yields residuals with no
elevation correlation for the global data set but significant correlation for th,
European stations. Tests described in Section 6.5 indicate that the correlation

in the non-GPM2 solution arises from the gravity field information in degrees
7 thru 14. Further tests are needed to better understand the apparent
correlation and its significance.

8.5 Correlation with Topography

Under certain assumptions the topography and its isostatic compensation
can be considered to generate a portion of the earth's gravity field. It is

appropriate to consider the correlation of the spherical harmonic
representation of the topographic/isostatic potential and of the gravitational
potential represented by various models. Such correlafion, by degree, can be
computed from eouation (6.7). The average correlation for several different

57



Table 26. Root Mean Square Residual From Satellite Orbit Fits Using Selected
Geopotential Models

Potential Model

Satellite Standard* 86C 86D GPM2

Starlette * 47 cm 143 179 737 cm
Seasat 1 0.67 cm/s 1.39 1.46 1.76 cm/'s
Oscar t 1.52 cm/s 1.42 1.42 1.62 cm/s
BEC * 75 cm 69 175 133 cm
Lageos 8 cm 8 8 16 cm
Lageos 7 cm 7 7 17 cm
Geos-2 ± 134 cm 85 97 347 cm

- see text

The standard field used in Table 26 is a specific field that in some cases
is a tailored geopotential model. Specifically the standard models are PGSI331
for Starlette; PGSS4 for Seasat; GEM10B for Oscar, BEC, and Geos-2; GHML2 for
Lageos. The 86C/D and GPM2 models were used in the fits complete to degree
and order 36.

9. Summary and Conclusions

It has been five years since our previous high degree expansion arid
combination solution had been carried out. Since then we have seen a number
of developments that warranted the new solutions described in this report.
These developments are in the data area; the theoretical area; and the
computer area.

In the data area we have recently completed a new set of Ixl" mean
terrestrial gravity anomalies. This collection of anomalies has increased from
our prior set and has improved estimates in a number of areas. In addition a
set of ocean wide I'xl" anomalies has been derived from the Geos-3/Seasat

0 altimeter data. The merged terrestrial/altimeter data set provides a more
complete and more reliable data had than ub,:d before. And finally, we had
the GEMI.2 potential coefficient set and its revised accuracy estimates to use
for our a priori solution.

In the theoretical area, several improvements have been made in the new
solution. First, the boundary condition relating gravity anomalies and the

N disturbing potential was more precisely formulated to avoid a sphericfl
approximation. Second, correction terms were formulated that enabled the

*' integration over the surface of the ellipsoid as opposed to an integration over
a spherical surface.

--,: a~
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3. What is the smoothing effect on the potential spectrum from the use of
the optimal estimation (or least squares collocation procedure)?

4. What is the best way to carry out a high degree expansion using
30*x30" mean values and what differences will be found with the P solution
carried out for this study?

5. Sould Doppler derived geoid undulations be incorporated into the
*' geopotential solution and if so, what parameters should be modeled?

6. What is the best way to balance the needs for a gravity near the
earth's surface and in space?

7. Should geophysical anomalies be used at all in the solutions or should
their use be restricted to locations where some independent verification is
possible?

8. What is the reason for the residual undulation correlation with
elevation found in most geopotential solutions?

9. What is the effect of using the full error variance-covariance matrix of
the a priori potential coefficients.

10. What are the divergence problems for the potential series, and series
representation of other gravimetric quantities, implied by these high degree
spherical harmonic, expansions?

Finally we should note that there is a strong need for an improved
satellite potential coefficient set. Although GEML2 is strong at degrees below
6, substantial improvement is needed in the higher degrees. As such fields
become available it will become reasonable to repeat the combination process to
obtain an accurate representation of the earth's gravitational potential.
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